Hybrid Combination of Knowledge-and Cepstral-based Features for Phoneme Recognition
نویسنده
چکیده
| In this paper a new, general, mathematically sound technique is developed to integrate knowledge-based information with standard cepstral features into the formal HMM framework for phoneme recognition. By using these hybrid features, the maximum amount of information contained in the speech signal can be utilised. It is shown that a trivial extension of the statistical models used to model the cep-stral features, cannot be used to model the hybrid feature vectors, as this results in a decrease in phoneme recognition accuracy. By using the proposed hybrid technique though, a statistically signiicant increase in phoneme recognition accuracy is achieved.
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملبهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگیهای استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز
The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...
متن کاملSpeech/Non-Speech Segmentation Based on Phoneme Recognition Features
This work assesses different approaches for speech and non-speech segmentation of audio data and proposes a new, high-level representation of audio signals based on phoneme recognition features suitable for speech/non-speech discrimination tasks. Unlike previous model-based approaches, where speech and non-speech classes were usually modeled by several models, we develop a representation where ...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007